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SUMMARY

A class of problems of both great fundamental interest and practical relevance

is in the field of highly compressible turbulent flows of multi-fluids. Shock inter-

action with turbulence and/or flames have many practical applications and require

advanced computational techniques. This report summarizes the work done to date

to develop methods and algorithms for hybrid structured-unstructured methods in

large-eddy simulations (LES). Particular emphasis is given to efficiency and accuracy

while using techniques applicable to solution-adaptive approaches. The formulation

and algorithm for statically refined grids for DNS and LES is shown to be robust and

allows rapid inclusion in existing solvers with a minimal change in code base while

also ensuring compatibility with existing features. Extensions to solution-adaptive

techniques from the static approach are discussed. The application of the method to

numerous flow examples demonstrates the capability and robustness of the method.

Finally, an adaptive Cartesian method using level-sets and cut-cells to solve the in-

teractions of complex, deforming and reacting bodies in a compressible flow field is

developed and validated.
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CHAPTER I

INTRODUCTION

Compressible fluid problems such as detonations and SCRAMjets consist of many
computationally demanding flow features. Thin shocks and flames require very fine
grids to accurately resolve the discontinuous flow features while turbulence intro-
duces resolution requirements dependent on the geometry and Reynolds number. For
problems such as these, a structured grid required to resolve the shocks and flames
and their interactions with, and creations of, turbulence would need to be globally
very fine due to the lack of a priori knowledge of the exact flow movement. Struc-
tured grids are desirable due to the ability to construct high order numerical schemes;
unstructured grids are useful at resolving complex geometries with minimal mesh gen-
eration effort. A majority of problems of interest would benefit from the ability to
use unstructured grids near-wall for complex bodies while retaining structured grids
away from walls using high order schemes.

In these situations, solution-adaptive grid methods can be used to save compu-
tational cost. These methods allow refinement of the grid to follow flow features,
enhancing accuracy of the solution in regions of interest. Refinement can occur by
either moving the existing grid points in relation to the flow, so called arbitrary
Lagrangian-Eulerian (ALE) methods, or by adding/removing grid points based on
the flow. The latter approach is the subject of this report. Methods to insert and
remove points for increased accuracy when solving partial differential equations have
existed since the early to mid 1970’s [3] while the currently accepted terminology of
adaptive mesh refinement (AMR) entered the literature in the early 1980’s [4].

Regardless of the terminology used, the objective in such methods is to provide the
most accurate solution possible with the least amount of work needed by only retain-
ing grid points in regions of interest. This is particularly useful in transient problems
where the region of interest moves, often rapidly, throughout the domain. Berger and
Colella [5] extended the approach to shock hydrodynamics in two dimensions and
the framework laid out in that work still stands as the foundation for modern AMR
methods. As pointed out in [5], efficient implementation of AMR methods requires
advanced data structures and parallel algorithms. Such a transformation in data
structures requires substantial rewriting of existing code base. In order to maintain
the existing code features and capabilities, a block-unstructured approach was chosen
and described herein.

The method described in this report leverages the multi-block solver capability
of the Large-Eddy Simulation with LInear Eddy (LESLIE) code to maintain struc-
tured grids within each block while allowing the interfaces between blocks to be
non-matching, and thus unstructured. This approach allows rapid and simple im-
plementation of the method into an existing code base because the underlying data
structures do not have to change. Additionally, a static method was chosen initially
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to: allow the study of sudden grid refinement or coarsening on the solution of various
flows; allow testing of LES closures and models in a simplified framework; allow rapid
adoption into complex problems where the grid in an AMR approach would reach a
steady state despite the unsteadiness in the flow (bluff-body stabilized flames, rocket
combustors, swirl combustors, etc.). The traditional limitations of Berger-Colella
AMR [5] have been relaxed for this approach: curvilinear, body-fitted grids and non-
integer, anisotropic refinement ratios are permitted. The results shown in Chap. 4
demonstrate the successes of the method for flows of practical application with sig-
nificantly reduced cost and enhanced accuracy without altering the parallel scaling
and performance of the original code base.

In parallel to the development of the static mesh method, an adaptive Cartesian
method is developed along with a material model for the solution of reacting and
deforming solid bodies and their coupling to the flow field. The body is tracked us-
ing a signed distance level-set function with unstructured cut-cells on the fluid side
around the body. The interior of the body is solved using a robust mesh-free method.
The interface between refinement boundaries in the fluid and the interface between
phases are treated using the results of the static mesh refinement studies. This adap-
tive approach is extensively validated and applied to complex bodies deforming in
supersonic flows.

LESLIE is a multi-block, finite volume solver capable of both DNS and LES sim-
ulations. It uses a predictor-corrector, second or fourth order accurate numerical
scheme for smooth flows; a MUSCL upwind scheme for discontinuous flows, and a
hybrid MUSCL-central scheme for turbulent supersonic flows [6]. The LES equations
are closed by a single conservation equation for sub-grid kinetic energy which can be
used with constant coefficients or with the localized dynamic kinetic energy model
(LDKM) for variable coefficients. LDKM works for both subsonic and supersonic
cases [7] and has been extended into other applications such as magnetohydrody-
namics [8]. Advanced sub-grid combustion closures such as the linear eddy model
(LEM) are also available [9]. In addition to these gas phase approaches, a Lagrangian
solver for dense and dilute liquid and solid particles can be coupled in any combina-
tion with the gas phase methods [10]. The code has been applied to many different
classes of problems. Cases of particular interest here include the study of Richtmyer-
Meshkov instability [11], the study of blasts due to the detonation of homogeneous
explosives [12], and the study of explosives containing metal particles [13].

The material model and related work presented in this report leverages results
achieved under projects from the Office of Naval Research (ONR) and Eglin AFB.
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CHAPTER II

OBJECTIVES AND MOTIVATION

A class of problems of both great fundamental interest and practical relevance is in
the field of highly compressible turbulent flows of multi-fluids. Typical challenging
problems are in multi-phase detonations (these can involve gaseous detonation wave
interacting with two-phase reactive mixture or detonation products containing re-
active or inert particles) and in strong shock wave propagation in turbulent media
followed by shock induced ignition and combustion. Shock interaction with turbu-
lence and/or flames have many practical applications for US Air Force in applications
such as scramjets, pulse-detonation engines (PDE), stage separation, supersonic cav-
ity oscillations, hypersonic aerodynamics, detonation induced structural destruction,
detonation induced destruction of chemical and biological agents, etc..

There is very little experimental data (even when available the data is sparse and
not time-resolved) and these multi-physics problems are also inherently difficult to
solve due to the very large range of temporal and spatial scales involved. Numerical
approach must capture strong moving shocks and fine-scales of turbulence. Con-
ventional shock capturing schemes are too dissipative for this purpose. As a result,
new high-order schemes, such as the ninth-order weighted essentially nonoscillatory
(WENO) shock-capturing schemes have been developed for direct numerical simula-
tions (DNS). Furthermore, all these studies are in very simplified (planar) shock-tube
type geometries. However, for practical application to SCRAMJET or PDE type
applications, the geometrical complexities and test conditions are such that DNS and
even very high order schemes are not computationally practical. In order to conduct
LES of supersonic and shock-dominated flows new algorithms and subgrid closures
for highly compressible flow have to be developed and validated.

For example, in addition to the scales associated with the shock structure and fine-
scale turbulence, particle (e.g., liquid droplets) motion, fuel-air mixing and finite-rate
reactions have to be included for some applications. Chemical kinetics are usually
very stiff requiring very small time-steps to properly resolve turbulence-chemistry-
shock interactions. Implicit schemes have only limited functionality (since there is a
limit beyond which the time scales of interactions have to be resolved), and also have
problems scaling in massively parallel systems.

A robust approach to these problems requires the ability to capture multiple,
widely varied spatial and temporal scales as well as the development and/or enhance-
ment of subgrid closures. The methods developed here validate static and adaptive
mesh refinement against canonical flows to determine the success of such methods.
Additionally, a new formulation for the linear eddy model is presented that overcomes
limitations in the existing model when applied to highly compressible flows.
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CHAPTER III

GRID REFINEMENT METHODOLOGY

To maximize the flexibility of the static method, no restriction is placed on the re-
finement/coarsening ratio nor is there a restriction on the placement of nodes on the
block interfaces. This means that a block may have a fine grid near the top and bot-
tom with a coarse grid in the middle while its neighbor has the opposite configuration.
The number of points may or may not be the same along the interface and the nodes
do not have to overlap. In order to make this possible, the procedure in both blocks
must be identical and independent of the configuration of the neighboring block. This
is very distinct from other approaches, which either limit the refinement ratios pos-
sible [4, 5] and/or treat the coarse-to-fine procedure different than the fine-to-coarse
procedure [14, 15]. The algorithm is designed to allow inclusion in an existing code
with minimal changes to the routines.

3.1 Pre-processing Algorithm

For the static case, the unstructured connectivities between the block interfaces is
generated a priori and stored in files corresponding to each block. This approach is
used because it is consistent with the original approach used by LESLIE to handle
structured multi-block topology. For the structured block interfaces, a mapping is
generated and stored for each neighbor that indicates the alignment of the computa-
tional coordinates (for example, i, j, k in one block matches −k, i, j in the neighbor).
These dictate the order of variable packing during message passing and are strictly
one-to-one. However, for the unstructured interface, there may be a one-to-one,
one-to-many or many-to-one mapping. Only those blocks indicated during the grid
generation process as having an unstructured interface require the extra information;
the remaining interfaces and blocks are still treated using the original structured
approach.

The merging of the distinct grids is performed using Algorithm 1. There are several
important discoveries from the pre-processing algorithm that can greatly improve the
performance of the neighbor search when the grid is adapted dynamically during
the simulation. For a given block with an unstructured interface, all the possible
neighbors to that block have their grids decomposed into an unbalanced oct-tree
using a Morton space filling curve shown in Fig.3.1. Other space-filling curves may
be used and in certain applications may yield faster search results. However, the
Morton curve generates consistent performance for a wide range of applications and is
chosen as the default approach here [16]. This method is used to decompose the grids
neighboring the block of interest into an unbalanced oct-tree to facilitate searching.
Each node of the tree contains a Cartesian bounding box containing at least one cell
center. If a node contains more than one cell center, the bounding box is divided
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equally along each coordinate axis and the children are then populated with the
cell centers contained within their smaller bounding box. The node with the newly
created children retains its bounding box for later comparison.

Should a child contain more than one cell center, the process is repeated. Should
there be zero cell centers, the child is pruned and should there be one cell center,
the child is a leaf node on the tree. Strong clustering such as near walls, or rotated
grids where the Cartesian bounding box may contain large amounts of physical space
outside the domain, tend to create very unbalanced, deep trees.

Figure 3.1: Morton, or Z, space filling curve, taken from [1]

Algorithm 1 Pre-processing algorithm

1: for n = 1→ numberOfUnstrBlocks do

2: CreateOctTree(otherGrids)
3: for i, j, k = gridP ts(n) do

4: nearestNeighbor ←SearchTree(x, y, z(n))
5: SaveNeighborInformation(x, y, z(nearestNeighbor))
6: end for

7: end for

8: InvertMapping(...)

Two search procedures can be used and the performance of each depends on the
grid distribution. Figure 3.2 shows both methods for navigating the tree. Regardless
of the grid point distribution, the search for the first point in a block uses the method
in Fig. 3.2a. In this method, traversal starts at the root node. If a node has children,
the point of interest is compared to the bounding box of the node to determine which
child should be accessed next. This takes three comparisons. The number of levels
in the tree, if balanced, is log2D M where D is the number of dimensions and M is
the number of grid points. In the general case, this method will require 3 log2D M
operations to locate the nearest neighbor. If unbalanced, the number of levels is not
easily determined.

5
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(a) Traditional Search
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(b) Alternate Search

Figure 3.2: Two possible search algorithms. When starting searches with a new grid,
the traditional method is used first. The alternate method may provide enhanced
performance depending on the grid clustering after the initial point is found.

Once the first point is found and the traversal pointer is somewhere at the bottom
of the tree, it is time to search for the next point. The traditional method can still
be used by setting the traversal pointer back to the root node and continuing just as
before. However, in a relatively uniform grid, the next point of interest is near the
previous point of interest. This example is shown in Fig. 3.2b. In this case, the cost
of the traditional method is once again 3 log

2D M ; by using the assumed proximity to
the previous point, this cost can be reduced to O(1) operations, typically requiring
one or two traversals. However, the worst case search in this is twice the cost of the
traditional method. For instance, moving from the green to the red node in Fig. 3.2b
requires in general 6 log2D M operations.

Figure 3.3 shows the probability of node traversals for a uniform (red) and highly
non-uniform (blue) grid using the alternate method depicted in Fig. 3.2b. For both
fine grids, the depth of the tree is 9 levels. The coarse grids have 8 and 9 levels for
the uniform and non-uniform grids. Based on the depths, the traditional method
would typically require 9 node traversals for each search point. Using the alternate
method, the best case is 1 or 2 traversals while the worst case is 18 (up the tree then
back down). As the figure shows, the uniform grid requires less than 9 traversals for
95% of the searches using the alternate method. However, the non-uniform grid has
virtually all of the searches taking more than 9 traversals, many close to the worst
case scenario. Also, the uniform grid results show very few odd-number traversals.
This is an indication that the tree is relatively well balanced because it takes an
equal number of up and down traversals from the previous node to get to the next.
The non-uniform case has roughly a quarter of its searches taking an odd-number of
traversals indicating an unbalanced tree.

These results have implications for constructing and searching the nearest neighbor
trees for AMR during the simulation. As each block refines or coarsens, it must search

6



Figure 3.3: Probability of node traversals for a uniform and highly non-uniform grid
tree search using the alternate method shown in Fig. 3.2b.

its neighbors to determine the new nearest neighbor cells because the refinement may
be non-uniform and anisotropic. The search algorithm can track the number of node
traversals for each block and if it exceeds the number of levels frequently, switch from
the alternate to traditional search method to ensure optimal performance.

3.2 Parallel Algorithm

The implementation of the static algorithm in an existing massively-parallel code
needs to be simple and not alter the original performance of the code. The original
code uses a multi-block framework where each grid block is surrounded by at least
one layer of ghost cells that exactly match the cells on the interior of the neighbor
block, as shown in Fig. 3.4. Additional layers of ghost cells, if needed, are built in a
similar fashion.

At the end of each sub-step in the predictor-corrector algorithm, the ghost cells
are updated by communicating the values from the interior cells marked with a bold
outline to the respective ghost layers as indicated by the arrows in Fig. 3.4. These
ghost layers provide the boundary conditions for each block. Contrast this with the
block-unstructured topology shown in Fig. 3.5.

For the block-unstructured interface, two procedures are required to populate the
ghost cells in Fig. 3.5. The data restriction procedure is the process of moving
information from the fine grid to the coarse grid ghost cells while the data recon-

struction procedure is the process of moving information from the coarse grid to
the fine grid ghost cells [15]. In this approach, both procedures are treated identi-
cally. This is because within a block, some points may require restriction from the
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x = 0

x = 0

Figure 3.4: Structure of and ghost cell construction/population technique for a stan-
dard block-structured interface in LESLIE.

x = 0

x = 0

Restriction

Reconstruction

Figure 3.5: Structure of the block-unstructured grid containing refinement or coars-
ening. Note, the physical boundaries remain unchanged after coarsening, while the
ghost cells are clearly larger and simply extrapolated from the block rather than
copied from the neighbor.
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neighboring block while some may require reconstruction depending on the topology.
Determining and detecting this is quite expensive. The expense is negligible if the re-
finement or coarsening ratios are fixed to known ratios between blocks but this limits
the usefulness of the method. The formulation of the restriction and reconstruction
procedure is detailed in the next section. These procedures are performed by the
sending block just prior to the communication phase of each sub-timestep, just as the
normal ghost cell filling technique. This is the only change required in the core of the
underlying code.

3.3 Data Restriction and Reconstruction

Depending on the type of simulation, there are various possible methods for the
data restriction and reconstruction procedures. When performing a direct numerical
simulation (DNS), interpolation is the only method for both procedures. However,
when performing a large-eddy simulation (LES), there are more options.

The data restriction process can be done in three primary ways: interpolation,
filtering, and a hybrid method involving determining the underlying field. The hybrid
approach requires determining the unfiltered field using an approximate deconvolution
method (ADM) [17,18] on the fine grid and then filtering the resulting field onto the
coarse grid. The filtering approach with and without ADM is attractive, but in order
to do it correctly, the actual filter size on both sides must be known as well. This
is difficult to determine for anisotropic, non-uniform refinements and unless the LES
is performed with explicit filtering, even if the filter sizes were known, the form of
the filter is not [19]. Because of this, the interpolation approach is chosen. The data
reconstruction process has two primary methods: interpolation and the ADM with
filtering approach. Just as before, filtering is a complicated for the general case so
interpolation is used here as well.

In the compressible large-eddy simulation, the flow variables are Favre-averaged.
Any variable f is Favre-averaged as f̃ = ρf/ρ. If the approximation of a variable
is indicated with (̂·) and the superscripts c and f indicate the coarse and fine grid
respectively, the interpolation approach for data restriction and data reconstruction
yield:

ˆ̃
f c = L(f̃ f) + E(f̃ c, f̃ f) (3.1a)

ˆ̃
f f = L(f̃ c) + E(f̃ f , f̃ c) (3.1b)

where L() is the interpolation operator. The error term, E, in Eqns. 3.1a and 3.1b
includes two components. The first is the error due to the interpolation operator. The
second accounts for the difference between filtered values on the different grids. For
this approach, the error terms are not modeled. The interpolation method is chosen
such that the error due to the approximation is of a smaller order than the truncation
errors in the numerical scheme. The second component of the error term requires a
model and is under further investigation. The results discussed in Chapter 4 detail
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the influence and potential forms such a model might have. The code implements
two forms of the L() operator discussed below.

3.3.1 Inverse Distance Weighting

Inverse distance weighting (IDW) is a general classification of interpolation methods
where points nearest the target point contribute more to the interpolation value than
points far away. These methods are often also called Shepard’s methods, named after
the original developer, and are well studied [20–22]. Despite the drawbacks of such
methods, it is non-oscillatory, inexpensive, and simple to implement.

The interpolated value is computed by [22]:

û(~x) =

N∑

k=0

wk(~x)∑N
k=0

wk(~x)
uk (3.2)

where

wk(~x) =
1

(r~x,~xk
+ ǫ)p

(3.3)

are the weights based on the distance, r, from the target point located at ~x to the
point in the support domain located at ~xk, and ǫ is a small number added to the
distance to ensure there is no singularity. The exponent p is a fall-off parameter used
to further localize the weighting. Typically this is taken as 2 [20], but any value is
permitted. Various values are analyzed in Chapter 4.

3.3.2 Moving Least-Squares

The moving least-squares (MLS) interpolation method gives an interpolated value
with:

û(~x) =
N∑

k=0

wk(~x)uk (3.4)

where the weights, wk, are determined by:

wk(~x) = Wk(~x)p(~x)
TA(~x)−1p(~xk) (3.5a)

A(~x) =

N∑

k=0

Wi(~x)p(~xk)p(~xk)
T (3.5b)

The basis function p(~x) can be chosen freely. For the results presented here using
MLS, it is a quadratic polynomial to provide second order interpolation when used
with a second order scheme and a quartic polynomial to provide fourth order inter-
polation when used with a fourth order scheme. The weighting functions Wk(~x) can
likewise be chosen freely, including the use of the IDW weights from the previous
section. All results with MLS use a Gaussian weighting function.
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Both of the interpolation methods presented in Sections 3.3.1 and 3.3.2 require
the user to specify the neighborhood size around the nearest neighbor point. For the
IDW method, this parameter can range from zero to the number of points in the
neighboring block. If zero is chosen, this puts the nearest neighbor value into the
ghost cell and no interpolation is performed. For the MLS, the selection of stencil
size has more limitations because the matrix in Eq. 3.5b must be inverted and non-
singular. Ideally, for points not near the block boundaries, the stencil size can be
minimally one more than the order of the basis function. However, near corners, this
will be too small and yield a singular matrix. The maximum number of points is still
the size of the neighboring block. The stencil size should be kept as small as possible
to minimize smearing of the fields. The influence of the stencil size on large scale
structures for both interpolation methods is discussed in Chapter 4.

3.4 Performance

Consider a base grid configuration with dimensions 128x64x64 cells, split into 16
blocks. The right half of the grid (8 blocks) are then coarsened by two in all directions.
The total number of points is now 9/16 of the original amount. If the total number
of blocks remains unchanged, no cost savings are realized because of very poor load
balancing. The 8 original blocks have eight times more points and thus the 8 coarsened
blocks will sit idle while the originals finish.

However, if proper load balancing is performed and the original 8 blocks are
matched to a single block on the right hand side, yielding 9 blocks of the same size,
the problem becomes balanced. Theoretically, this problem should take the same
amount of wall time as the previous setup, but it will run with fewer processors. In
practice, rather than realizing the 44% savings in total CPU time, the actual savings
are approximately 40% due to the extra cost of interpolating the fields prior to com-
munication. The exact savings will vary, depending on the refinement ratio and the
ratio of the number of cells on the interface between blocks with the number of cells
interior to the blocks and is thus very problem specific. The results here show that
substantial cost reduction occurs and the cost of interpolation is minor.
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CHAPTER IV

GRID REFINEMENT FOR VARIOUS FLOW

CONFIGURATIONS

For all the cases described below, unless otherwise noted, the grids are set up the
same. The flow is from left to right through a channel 1m long and 0.5m high and
deep. The simulations are run first on an all-fine grid with resolution 128x64x64
cells and on an all-coarse grid with resolution 64x32x32 cells. For the fine-to-coarse
(F2C) cases, the grid is composed of two domains each 0.5m3. The left domain has
the cell-density equivalent to the all-fine case, 64x64x64, and the right domain has
the cell-density equivalent to the all-coarse case, 32x32x32. For the coarse-to-fine
(C2F) cases, the domains are reversed with the coarse domain on the left and the fine
on the right. The boundary conditions are periodic in the span-wise and transverse
directions and non-reflecting characteristic inflow and outflow [23] in the stream-wise
direction. Any cases with deviations from this setup will be noted.

4.1 Convection of Isotropic Turbulence

Isotropic turbulence is generated and superimposed on the mean flow to determine the
influence of the grid discontinuities on the flow and energy spectra. The turbulence
is first generated on a 0.5m3 domain with 1283 cells using the model spectrum [24]:

E(κ) = u2

rms16

√
2

π

κ4

κ5

0

exp
(
−2κ2/κ2

0

)
(4.1)

where E is the kinetic energy, κ is the wave-number, and κ0 is a tunable parameter
defined as the location where the peak of the model spectrum is located. For these
cases, κ0 = 4 as in [24]. The RMS velocity is then given by:

u2

rms =
2

3

∫
∞

0

E(κ)dκ (4.2)

The model spectrum is not physical and must be run for several eddy turn-over
times to generate turbulence that is physical. To accelerate this process, the pressure
field is initialized by solving a Poisson equation using the initial velocity field and
a low-Mach number approximation is used to initialize the temperature and density
fields.

Once the turbulence has decayed and relaxed to a physical solution, the velocity
field is then normalized by the RMS velocity of that solution and rescaled to the
desired value. For the cases here, the mean flow is 100m/s and the RMS is 10% of
the mean. Once rescaled, the velocity is then filtered in physical space using a box
filter onto a 643 and 323 grid for use in the inflow of the fine and F2C, and coarse and
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Figure 4.1: Isocontours of Q-Criterion colored by vorticity for the F2C and C2F cases.

C2F cases, respectively. The temporal fluctuations of the velocity components are
recorded at two locations downstream of the grid discontinuity: near the interface (3
cells away) and far downstream (16 cells away). The interpolation procedure is the
MLS method with a stencil parameter of 4.

Figure 4.1 shows the influence of the refinement/coarsening on the turbulent flow.
The F2C case shows large-scale turbulent structures after the coarsening while the
C2F case shows considerable anisotropy, few large structures, and a build-up of vor-
ticity at the interface. The C2F case has considerable difficulty with the turbulence
convection at the large scale.

The 2D contours of vorticity shown in Fig. 4.2 make clear the quality of the
method. The F2C case has many of the same large-scale structures after the dis-
continuity as the all-coarse case, but there are also numerous smaller features from
the all-fine case that are evident. The C2F case shows plenty of structure after the
discontinuity, but it also shows more noise than the all-fine case.

The turbulent kinetic energy spectra in Fig. 4.3 show the same trends as the
Q-Criterion and vorticity; the spectrum in the F2C case shows the correct slope in
the inertial range, consistent with the observation of the large scale structures in Fig.
4.1. The C2F case shows a slope lower than the −5/3 expected through the inertial
range near the interpolation boundary and a deviation in the spectrum for the large
scales compared to both the fine and coarse only solutions. This is likewise consistent
with the degradation of the large scale structures in Fig. 4.1. As the flow moves down
stream the turbulence recovers considerably.

In addition to the large scale effects, the C2F case also highlights another issue.
The data between the two filter sizes is “newly” resolvable and appears to have too
much energy. Zooming in, as in Fig. 4.4, the slope of the energy in this range near
the boundary does not show the correct slope while further from the boundary it is
approaching the correct value.

An estimate for the number of cells required for the turbulence to recover can be
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Figure 4.2: Contours of vorticity magnitude for isotropic decaying turbulence con-
vected across a refinement boundary

Figure 4.3: Kinetic energy spectra for the various turbulence cases. The dashed
vertical lines are the LES cutoff filters.
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Figure 4.4: Kinetic energy spectrum between the two filters for the C2F case. Near
the boundary (3 cells downstream) is on the left and far from the boundary (16 cells
downstream) is on the right.

found by appealing to the common scaling laws of turbulence:

E ∝ ǫ2/3κ−5/3 (4.3a)

ǫ ∝
u′3

l
=

u′4

νRet

(4.3b)

where E is the kinetic energy, ǫ is the dissipation rate, κ is the wave-number, u′ is the
characteristic velocity fluctuation, ν is the kinematic viscosity and Ret is the turbulent
Reynolds number. Equation 4.3b is simply −∂E/∂t when considering isotropically
decaying turbulence. The amount of time it takes for a given energy to decay from
one wave-number to another is:

∂κ

∂t
=
∂E

∂t
·

(
∂E

∂κ

)
−1

=
3

5

u′4

νRet
ǫ−2/3κ8/3 (4.4)

which when reduced and integrated from κ1 to κ2 and t = 0 to t = t1, gives:

t1 =

(
u′4

νRet

)
−1/3 [

κ
−5/3

1
− κ

−5/3

2

]
(4.5)

The wave-numbers are related to the LES grid or filter size depending on the filtering
approach chosen with κ1 corresponding to the coarse grid filter and κ2 corresponding
to the fine grid filter. This, combined with the grid spacing dx and the convective
velocity C, yields an estimate for the number of cells:

C

dx
t1 = aN (4.6)

where a is a constant and N is the number of cells. The exact value of a needs to
be determined; the underlying derivations are themselves only approximations and
other factors such as the sub-grid model and the amount of dissipation in the chosen
numerical scheme will all influence the exact number of cells and thus a.

These results show promise for the ability of the method to capture turbulence as
it crosses the refinement boundary. Even in the worst case, turbulence crossing from
coarse to fine grids, provided a buffer space is present on the fine side of the grid before
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the region of interest, turbulence is represented adequately. This is important because
while it is theoretically possible to use solution-adaptive techniques to further refine
the grid for turbulence, in practical problems, there is turbulence everywhere. This
would lead to a uniformly finer grid and eliminate the benefit of solution adaptivity.
Additionally, it is fairly straight forward to argue that AMR will never be better than
high-order methods when it comes to resolving turbulence [25]. As a result, there will
almost always be turbulence crossing both F2C and C2F boundaries in problems of
interest where the solution-adaptivity is needed for other flow features.

4.2 Convection of Large-Scale Flow Features

4.2.1 2D Vortex

In this case, a 2D vortex is initialized at X = 0.25Xmax and run until it reaches
X = 0.75Xmax with a refinement or coarsening boundary at X = 0.5Xmax. The
initialization of the vortex is superimposed upon a mean flow defined by [23]:

u = u∞ +
1

ρ

∂ψ

∂y
(4.7a)

v = −
1

ρ

∂ψ

∂x
(4.7b)

where

ψ = C exp

(
−

(x− x0)
2 + (y − y0)

2

2R2
c

)
(4.8)

The initial pressure field is given by:

p = p∞ − ρ
C

R2
c

exp

(
−

(x− x0)
2 + (y − y0)

2

2R2
c

)
(4.9)

For the present case, the vortex radius is 0.05 meters and the strength is 0.25u∞.
The convective Mach number is 0.3, chosen only to allow more rapid testing. The
objective is to determine how the various interpolation parameters influence the ac-
curacy of the simulation and the resulting vortex structure.

Both the IDW and MLS interpolation methods are used and the tunable param-
eters (stencil size and exponent, p, for IDW and stencil size for MLS) are varied
parametrically to locate the error minimizing set. For the IDW method, the stencil
size is varied from [1, 5] and the exponent p is varied from [1.0, 4.0]. For the MLS,
a quadratic basis function is used with the stencil size varying from 3 to 5. Values
smaller than 3 result in a singular matrix as discussed in 3.3.2.

In order to estimate the error, the circulation Γ is computed around each resulting
vortex. The size of the bounding box used for integration increases to determine
the circulation at multiple radii. The error is then determined from comparing the
maximum circulation values for each against against both the all-fine and all-coarse
circulation results.

The best methods for each case are highlighted in Fig. 4.5. It is clear from the
values that no single method performs best for both the C2F and F2C cases, although
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Figure 4.5: Table of errors for the vortex case parameter study

most of the cases are well within 1% error. Additionally, some care must be taken
when interpreting the error results compared to the various cases. For example, with
the F2C case, the final vortex is on the coarse grid. But, it may be more accurate than
the all-coarse solution while not quite as good as the all-fine case solution. As a result,
it may have non-negligible error compared to both when it is in reality between the
two solutions. Further insight into the ideal parameters can be gained by inspecting
the actual circulation values for the various cases as in Fig. 4.6.
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(a) C2F, IDW interpolation, stencil offset of 1 (b) C2F, IDW interpolation, stencil offset of 2

(c) F2C, IDW interpolation, stencil offset of 1 (d) F2C, IDW interpolation, stencil offset of 2

Figure 4.6: Circulation results for the vortex convection
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(e) C2F, IDW interpolation, stencil offset of 3 (f) C2F, IDW interpolation, stencil offset of 4

(g) F2C, IDW interpolation, stencil offset of 3 (h) F2C, IDW interpolation, stencil offset of 4

Figure 4.6: Circulation results for the vortex convection continued
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(i) C2F, IDW interpolation, stencil offset of 5 (j) C2F, MLS interpolation

(k) F2C, IDW interpolation, stencil offset of 5 (l) F2C, MLS interpolation

Figure 4.6: Circulation results for the vortex convection continued
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Based on the information in Figs. 4.5 and 4.6, the single set of parameters that
minimizes the errors for both the C2F and F2C is the IDW method with a stencil
offset of 4 and p = 3. The competing influence of the offset size and the exponent
is also evident. A large offset with a small exponent is very dissipative; however,
a larger exponent reduces the influence of far-away points, reducing the dissipation
while preserving the benefit of a large stencil in a smooth function.

The ability of the approach to capture derived quantities is evident but obscures
the influence of the parameters on the actual flow field. Figures 4.7, 4.8 and 4.9
show the velocity contours for the C2F-IDW case, F2C-IDW case, and MLS cases
respectively. In Fig. 4.7, there are always high-frequency oscillations on the leading
edge of the vortex that seem to become more severe as the exponent is increased.
These oscillations can be attributed to the newly resolved information and are the
cause for the increased kinetic energy between filters discussed in the previous section.
Additionally, the dissipation due to the large neighborhood of influence can be seen
as the offset is increased, particularly at low exponent values. The oscillations do
not appear on the V velocity contours. For all combinations, the vortex remains
symmetric.

The F2C vortex profiles in Fig. 4.8 do not show the oscillations of the C2F
case and although there is some dissipation for the larger stencil sizes, the vortex
maintains strength and symmetry. Contrast this with the MLS method in Fig. 4.9.
The high frequency oscillations are again present for the C2F case for the U velocity
contours but not the V contours. The dissipation likewise increases as the stencil
size increases. However, unlike the IDW method, the vortex distorts its shape for all
method, although the F2C with an offset of 3 shows minimal distortion.

Based on these results, the IDW method is superior for capturing the large-scale
flow features provided proper parameters are chosen. The cost of computing the
interpolation weights for the IDW method is also vastly cheaper than computing the
weights for MLS, although once computed the cost of interpolating is the same given
the same stencil size. Although the weight calculation cost is insignificant in the
static refinement situation, when performing adaptation during the simulation, the
cost of computing the weights will become very important to minimize.

4.2.2 3D Vortex Ring

The initial conditions for this case are set up using similar equations to the 2D vortex,
modified to generate a 3D vortex ring. This ring is convected through a pipe with
two coarsenings downstream. Additionally, the vortex is initialized with pure H2 and
the surrounding fluid is air. There are slip-walls around the perimeter of the pipe
and a characteristic inflow on the left and characteristic outflow on the right.

Isosurfaces of the vortex are shown as it moves through the pipe in Fig. 4.10. The
colors on the plane indicate the mass fraction of H2 with contours of the pressure
field. Just as with the 2D vortex, the symmetry and shape are retained as it moves
across the refinement boundaries for both the isosurface and the species contours.
The grid in the last refinement section is rather coarse relative to the original grid
and shows increased dissipation consistent with the grid quality.
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(a) U velocity contours (b) V velocity contours

Figure 4.7: Velocity contours of the vortex C2F case parametric study of the IDW
method
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(a) U velocity contours (b) V velocity contours

Figure 4.8: Velocity contours of the vortex F2C case parametric study of the IDW
method

(a) U velocity contours (b) V velocity contours

Figure 4.9: Velocity contours of the vortex case parametric study of the MLS method
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(a) Vortex ring in the initial fine grid (b) Vortex ring in the first coarsened grid

(c) Vortex ring in the second coarsened grid

Figure 4.10: Convection of a 3D vortex ring with two species through multiple coars-
enings
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4.3 Convection of Lagrangian Particles

In addition to gas-phase only problems, LESLIE is capable of solving complex sim-
ulations with both liquid and solid particle phases. The particles are tracked using
a Lagrangian solver and coupled to the Eulerian fluid phase [10]. The details of the
method are omitted here.

A vertical line of liquid heptane is convected from a fine grid to a coarse grid.
The simulation is only run until the particles cross the boundary. Figure 4.11 shows
that the line crosses the boundary as expected without deviation in relative particle
locations. Additionally, as the contours show, the species density is convected cor-
rectly and grows as it moves downstream as the particles evaporate while convecting.
The particles appear downstream of the center of the density contours because as
they evaporate, they experience less drag and move faster. Quantitative comparisons
between the SMR and uniform grids are on-going.
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Figure 4.11: Convection of evaporating liquid heptane particles across a grid discon-
tinuity.

4.4 Turbulent Flame Front Convection

A channel, similar to the isotropic turbulence convection cases, is set up with a
stoichiometric methane flame with burned gas on the right three-quarters of the
domain. Figure 4.12 illustrates the setup. The mean flow has isotropic turbulence
superimposed on it. The flame is convected by imposing a mean velocity from left to
right, across the coarsening boundary at X = 0.005, and the flame profile is found by
averaging along the span-wise and transverse directions shown in 4.13.

The flame profiles show some dispersion prior to crossing the boundary. This
dispersion is consistent with a predictor-corrector scheme and is not caused by the grid
discontinuity. However, once the flame crosses the boundary, the region of dispersion

Figure 4.12: Setup for the turbulent flame convection case. The flame front is con-
vected by a mean velocity to the right.
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Figure 4.13: Averaged temperature profiles for the turbulent flame convection case.

ahead of the flame front becomes a region of oscillation. The oscillations die out
quickly and are not of large magnitude. These oscillations occur due to the sharp
nature of the flame front. Additionally, the flame front thickens after the boundary.
This is to be expected: if the thinnest the flame can be is 2-4 LES cells, then it stands
to reason the flame will appear thicker when on a coarser grid, consistent with the
observation.

4.5 Turbulent Flow in Complex Geometries

To test the capability of this method to deal with practical problems under non-ideal
situations, the flow through a generic swirler with multiple coarsenings is tested. Such
swirlers typically find operation in power generation or industrial burners. Unfortu-
nately, using structured grids for a swirler is challenging; coupling the swirler with
the combustion chamber is nearly impossible to simulate due to the strict grid re-
quirements imposed by swirl vanes. The ability to patch together the grids using the
methods described previously is essential.

Figure 4.14 shows the Q-Criterion through the swirler. The total coarsening ratio
over the three sections is 27:1 roughly, but is not uniform along any interfaces. This
test is designed to test the ability of the SMR approach to handle complex flows
as well as to determine the limits of coarsening possible. The final section is too
coarse and shows the coherent structures dissipating. However, until this point, the
structures remain intact through the swirler. Additionally, the velocity and more
importantly the pressure profiles are continuous across the boundaries shown in Fig.
4.15.
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Figure 4.14: Q-Criterion for flow through a swirler.

Figure 4.15: Pressure and velocity profiles through the swirler.
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CHAPTER V

HYBRID UNSTRUCTURED SOLVER FOR

MODELING FLOW-STRUCTURE

INTERACTIONS

Simulation of flow structure interactions for deforming bodies in high speed flows such
as those with strong, unsteady shocks are being studied using a new hybrid algorithm
and an unstructured Cartesian multi-block solver. An unstructured flow solver using
a Cartesian grid with solution-based local adaptive mesh refinement (AMR) reported
previously is validated. This approach uses a level-set function and cut-cells to locate
and refine along solid boundaries while also allowing refinement along flow discontinu-
ities. The solid boundaries captured by the level-set are permitted to move arbitrarily
while still accurately capturing flow features. In order to validate the AMR solver,
supersonic flow over a circular cylinder is investigated. A deforming elliptic oval at
Mach 6 demonstrates the moving body component to this solver. The ability of the
solver to handle arbitrary material deformation is verified by a proof of concept study
of two dimensional supersonic flow over a shape changing body.

The new approach developed couples a mesh-free material phase solver using adap-
tive mesh refinement (AMR) with level-set refinement. More information on mesh-free
methods adopted can be found in [26]. This strategy was deemed necessary since,
for example, the evolution of the material surface for an exploding body involves
multiple length scales and time scales due to highly transient surface physics such as
fragmentation, flow convection and heat transfer into both the solid and gas phase
in the vicinity of a reacting surface. Therefore, the current approach employs AMR
to capture gas/solid interface and AMR is applied in both gas and solid phase to
capture small-scale properties. The coarse grid away from the gas/solid interface
resolves the fluid/material dynamics in meso-scales (scales of the order of boundary
layer thickness) while refined grid in the interface region resolves length scale smaller
than micron for surface evolution due to chemical reactions at the interface. The
interface tracking and coupling between fluid and solid phases is achieved by a level-
set method with a cut-cell approach to capture the moving interface explicitly with
proper conditions of mass, momentum and energy conservations at the interface.

For the non-hexahedral cells formed by the cut-cell process, an unstructured flow
solver has been developed. The coupled solver is modular in nature so that additional
models and features can be included as needed. For example, the material solver
is developed in a manner to include additional material models for elastic, plastic
and viscoelastic behavior. Various material models (so far only elastic and some
plastic models) have been implemented within the material simulation model using
the mesh-free approach. Mie-Grunseisen equation of state [27] is used at present.
The material and gas phase are coupled using the same level-set refinement with
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AMR described above. An added feature of this approach is a new sub-grid material
response (SMR) model [28] that is embedded within the material model. In this
approach, the conventional material model described above contains within it a sub-
grid discrete lattice model that allows coupling of the atomistic models to the larger
meso-scale simulation. This approach is akin to the Lattice Boltzmann models except
that the lattice interconnects are made of approximate bonds that represent the
molecular scale processes. Some validation of this model in application to nozzle
erosion and to solid propellant combustion was carried out earlier.

Preliminary validation of various features of the developed hybrid fluid-structure
solver have been completed in the current effort. There is still substantial effort
needed to fully deploy it for practical studies and this remains a goal for future ef-
fort. All these developments were carried in a parallel multi-block hybrid structured-
unstructured solver environment. Although the coupled flow-structure solver is op-
erational, its parallel scalability and performance requires some significant improve-
ments for practical large-scale simulations (note that the gas-phase and the two-phase
Eulerian-Lagrangian solver scale up to 1000s of processors). This remains a goal for
the future effort.

5.1 Meshfree Method and Cut-Cell with Level-set

Refinement

There are many algorithms that were developed and validated. Again, for brevity
only some key features are highlighted below. The overall numerical steps in coupled
fluid/solid solver with interface tracking and local AMR are depicted in the flowchart
shown in Fig. 5.1. First, the level-set function is initialized to identify flow and solid
regions. The cut-cell step follows and divides the cells into sub-cells that contains the
interface (zero-level-set). The interface conditions are solved to give proper boundary
conditions to each fluid and solid region. Then, in each fluid and solid region, the
respective solver is called to solve the governing equations. The pressure and density
gradients are checked to determine whether local mesh refinement is needed.

The root of mesh-free method is approximating functions over the randomly dis-
tributed nodal points. One of the advantages of mesh-free method against mesh-based
method is the independency of mesh topology, eliminating mesh related issues com-
monly faced in mesh-based method, especially in problems involving large deforma-
tion and irregular surface. For this reason, we have adapted meshfree approach in our
solid material solver. Among numerous approximating techniques and discretization
methods developed, a moving least squares (MLS) approach and point collocation
discretization method are employed here.

The entire computational domain is discretized in a Cartesian grid. Although the
approach is fully 3D, for the sake of discussion, the representative Cartesian grid in
2D is shown in Fig. 5.2. In Fig. 5.2, Φ represents signed distance level-set function
and defines gas phase, Φ > 0, solid phase, Φ < 0, and the gas-solid interface, Φ = 0.
First, each finite volume cell at the coarse level is tagged, by checking the sign of
Φ at eight corners of the volume cell, as interface cells with 1, boundary cells with
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Figure 5.1: Flowchart of coupled fluid/solid solver with interface tracking.

Figure 5.2: Computational domain with level-set function and cell identification: (1)
fluid phase where Φ > 0, solid phase where Φ < 0 and interface where Φ = 0, (2)
interface cells tagged with 1 and boundary cells tagged with ± 2. Dynamically refined
grids in the interface cells are also shown.
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2 for gas phase and -2 for solid phase. The boundary cells are the ones with the
interface cells in neighbor. Then, the interface and boundary cells at coarse level are
further refined within each of these cells dynamically to achieve higher resolution.
The refined cells are again tagged with 1 and ±2 as interface and boundary cells in
fluid and solid regions, respectively. The level-set equation is solved using fifth-order
Hamilton-Jacobi WENO scheme in space and third-order Runge-Kutta in time.

Once the interface cells are identified at the refined level, these cells are divided into
two sub-cells by the marching cube approach [2], forming non-hexahedral finite volume
cells. Each sub-cell is identified as either gas phase or solid phase cell. As sub-cells
form non-hexahedral volume cells, standard structured finite volume schemes cannot
be applied to these cells, nor the boundary cells, due to non-hexahedral neighboring
interface cells. Therefore, an unstructured finite volume fluid solver is developed for
these cells. For all other finite volume cells that are not tagged as either interface or
boundary cells, the standard structured finite volume scheme is applied.

It should be noted that the local mesh refinement is also applied within the gas
and solid phase domains where higher resolution is required, e.g., shocks or flames
in gas phase and composite materials composed of particles with different densities.
In this case, the refinement tag is flagged based on flow properties, e.g. density and
pressure gradients; the refined cells are not divided.

The interface cells are divided into two sub-cells, cut by the interface surface (zero
level-set surface). The interface surface is constructed by finding all intersecting points
between the interface surface and edges of the interface cell based on a marching cube
approach. In the marching cube method, there are 15 base cell types, see Fig. 5.3, that
are cut by the iso-surface (zero level-set). When rotation of coordinates is considered,
it produces a total 256 cell types, which are predefined in a library. Once each sub-cell
is constructed, geometrical information such as cell centroid, volume, surface center
and outward normal vectors, is computed.

32



Figure 5.3: Marching cube base 15 cut-cell types [2]. 256 cell types are generated by
rotating coordinates using these base types.
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5.2 Results and Discussion

5.2.1 Level-set Validation with Refinement

Various studies were performed to validate the approach. Here, two key test cases
are shown. A notched sphere in 3D computational domain with 1cm x 1cm x 1cm
is considered (shown in Fig. 5.4 (a)). The coarse grid has dimensions of 40x40x40
cells in the computational domain. The interface cells are further refined by 4x4x4
cells. The refined grids effectively provide a resolution of 160x160x160 cells. Figure
5.4 shows the results at initial, 90 degree and one full rotation of a notched sphere.
The bottom row in Figure 5.4 also shows the dynamically allocated refined interface
grids that move with the interface surface. While a smoothed spherical surface is well
maintained, the sharp corners at the notched surface become round as the sphere
rotates. The rounding can be minimized by increasing the mesh size in the coarse
grid and/or increasing the mesh size in the refined grids.

Figure 5.4: Level-set validation with a rotating notched sphere. Bottom row shows
dynamically allocated refined grids along the interface surface.

The efficiency of locally refined mesh approach is clearly seen in 3D simulations.
For instance, the 3D sphere deformation by a vortex flow, the total number of cells
required without local refinement to achieve the same resolution achieved by local
refinement in the example is 13.824 million cells. This will require approximately
443MB to store double precision level-set function and grid data. In addition, it will
require more CPUs in order to finish simulations in a reasonable time. However, using
local refinement, the total memory required is approximately 27.6MB to store double
precision level-set function and grid data. The simulation of 3D sphere deformation
is carried out using 64 CPUs in approximately in 4 hrs.

For the validation of the level-set/cut-cell interface tracking, a Zalesak’s disk in
2D computational domain with 1 cm x 1cm x 1cm is considered (shown in Fig. 5.5).
The coarse grid has dimensions of 20x20 cells and the fine grid 100x100 cells in the
computational domain. When the interface cells are identified along the zero-levelset
in the coarse grid, the interface cells are further refined by 3x3 cells. The refined
grids effectively provide a resolution of 60x60 and 300x300, respectively. Figure 5.5
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Figure 5.5: Rotating Zalesak’s disk. On the left, coarse grid with 20x20 cells on top
row and fine grid with 100x100 cells on the bottom. Refinement level for both is 3x3
cells resulting in effective resolution of 60x60 and 300x300 cells, respectively. On the
right, zoomed-in figure of Zalesak’s disk corners are shown in fine grid.

shows that the Zalesak’s disk keeps sharp corners in the fine grid simulation while the
corners are smeared in the coarse grid. In the figure on the right, zoomed-in figures of
corners of the Zalesak disk in fine grid are shown with the refined grid and cut-cells
along the interface. It is noted that the accuracy of interface capturing depends on
the grid resolution.

5.2.2 Material Model Evaluation

A class of tests were conducted to evaluate other material models. Hypoelastic-plastic
deformation of copper rectangular specimen (see Fig. 5.6) is considered with relatively
high velocity, 800 m/s, imposed on the top portion of specimen using a very coarse
grid. The material properties are set as: density = 8960, kg/m3, Young’s modulus
= 128GPA, yield stress = 100MPA, plastic modulus = 0.12GPA and Poisson ratio
= 0.36. Figure 5.7 shows computed stress fields, σyy and σxy, and deformation due
to impact loading on the top surface. It can be seen that the top surface around the
impact site is deformed and formed a crater around impact site. The normal stress
field in the vertical direction shows the peak at the top corner of crater. The shear
stress field shows the maximum at the edge of impact sites, pushing materials away
from the impact site.

In another simulation, a smaller copper specimen is considered assuming no ma-
terial strength, see Fig. 5.8. High velocity impact is applied at the left side wall with
constant speed of 2 Km/s. The material properties are the same as the ones in im-
pact on Copper block case. In this case, hydrodynamic pressure is computed through
Mie-Gruneisen EOS. Artificial viscosity is used in order to capture the shock discon-
tinuity. Figure 5.9 shows pressure and velocity profiles. The meshfree method with
artificial viscosity captured the shock discontinuity quite well, although it still shows
some numerical instability in pressure profile. This numerical instability is mainly
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Figure 5.6: Copper specimen test configuration.

Figure 5.7: Stress fields and deformation of copper specimen.

related with the coarse nodal distribution used in the current simulation. Further
validation will be conducted once rigorous parallelization of the meshfree method is
completed. Nevertheless, these simulations clearly show the ability of the new solver.

It is noted that all the other options in the code (LES, mixing, reaction kinetics,
condensed phase modeling etc.) are coupled with the material solver so once the
parallel optimization is completed application problems can be easily implemented
and studied.

5.2.3 Mach 4 flow over a cylinder

A half cylinder with radius of 1.4 cm is placed in the computational domain of 10x20
cm with 40x80 cells in the coarse grid. Further, a 3x3 cell refinement is carried
out around the body using cut-cells, achieving a near-wall resolution equivalent to
120x240 cells. The free stream is at Mach 4 and at atmospheric conditions. The flow
is assumed inviscid and there is no AMR for the flow, only for the cylinder body. In
order to adhere to the CFL number, the refined grid is sub-cycled at each iteration
on the coarse grid’s timestep.

Figure 5.10 show the temperature and pressure fields around the cylinder while
Figs. 5.11 and 5.12 show the streamlines and shock structure, respectively. The
computed normal shock stand-off distance is 0.52 cm while the established value is
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Figure 5.8: Test configuration for shock through copper specimen.

Figure 5.9: Pressure and velocity profile inside copper.

Figure 5.10: Temperature and Pressure Contours
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Figure 5.11: Streamline around cylinder

Figure 5.12: Pressure along cylinder centerline
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Figure 5.13: Pressure field before and after deformation

0.516 cm, showing reasonable agreement.

5.2.4 Moving Elliptic Oval at Mach 6

This case demonstrates the capability to simulate deforming body interactions with
high speed flows. The elliptic oval has a length of 4.5 meters and a thickness of
0.5 meters. The computational domain is 10m by 4m, with a coarse mesh of 28x14
cells. The cells containing the body interface are refined in each direction by three
cells. The body is deforming according to a prescribed motion where the centerline is
moving at 1 m/s to the left and the velocity magnitude decreases linearly away from
the centerline. The flow is from left to right at Mach 6 and atmospheric conditions.
Figure 5.13 show the pressure contours around the deforming body early and late in
the deformation process, respectively. The shock standing in front of the body is seen
to adjust to the movement of the body as expected. Since there is no data, this is not
a validation case; rather, it serves to demonstrate the capabilities of the new solver.

5.2.5 Mach 4 flow over 2D shape changing body

One of the main advantage of using a levelset-cutcell based approach is the ability
to robustly handle arbitrary shape change of material and the coupled flow physics
around such shape change as in the case of Explosively Forming Projectile (EFP). A
proof of concept study was therefore performed in which a slender body of thickness
0.36 centimeters is placed in a Mach 4 supersonic flow. The body, which is initially at
rest, changes shape with surface velocities as shown in Fig. 5.14. The flow response to
the shape change is shown in Figs. 5.15-5.16. Viscous effects are currently neglected
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Figure 5.14: Material surface velocity profiles.

Figure 5.15: Pressure distribution before and after deformation.

as they are only dominant very close to the body and do not affect the overall flow
features that are of primary interest in this study.

As can be seen in Figs. 5.15-5.16, during the deformation the body breaks into
several satellite pieces and this is captured well by the levelset front. The response
of the flow field to the expansion pressure wave that traverses downward due to the
shape change can be also seen in the pressure and density contours. Overall the
hybrid solver is shown to work for flow-structure interaction modeling applied to high
speed flows over arbitrarily shape changing bodies.

The goal of these proof of concept studies was to ensure that the coupled fluid-
structure solver with AMR is able to capture the associated flow physics in a consis-
tent algorithm. It was not the intention of these studies to carry out detailed high
resolution simulations or carry out detailed validation (because no data exists) since
at present the interface boundary condition implementation and parallel deployment
of this solver still needs further work. Future study will focus on optimizing this
algorithm for applications.
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Figure 5.16: Density distribution before and after deformation.
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CHAPTER VI

COMPRESSIBLE SUB-GRID MODELS

6.1 Linear Eddy Model

The linear-eddy model (LEM) is a multi-scale method where the 3D reaction-diffusion
equation and turbulence are reduced to a 1D line embedded within the LES simula-
tion. The reaction-diffusion equation is solved for the unfiltered mass fractions and
a sub-grid temperature field is evolved for computing reaction rates. The turbulence
is modeled using a stochastic process, in this case the triplet map, although other
mappings are available. The linear-eddy model is capable of resolving detailed flame
structures and phenomenon such as ignition and extinction [9]. LEM has been applied
to numerous flow fields including non-premixed, swirl stabilized bluff bodies [29], pre-
mixed turbulent flames in the thin reaction zone [30,31], scalar mixing in supersonic
mixing layers [32], lean spray combustion [33,34], and soot formation in turbulent jet
flames [35] among others.

Conceptually, LEM can be explained through Fig. 6.1. In a direct-numerical
simulation, the highly wrinkled flame requires a very fine grid to properly resolve all
of the length scales. The nature of LES implies a much coarser grid that does not
resolve all of the length scales; to model the sub-grid combustion processes, a 1D
LEM line is embedded within each LES cell providing a DNS-like solution. This is
shown in Fig. 6.1b.

6.1.1 Current Formulation

The LEM approach has three distinct phases: stirring, reaction-diffusion, and splicing.
The stirring step is a stochastic model for the influence of turbulence. The splicing
step is the way LEM cells move between LES cells based on the mass flux between
them. The full details of these two steps can be found in [9] and are not required for
understanding the remainder of this section.

The reaction-diffusion step solves the exact, unfiltered equations for species and
temperature within the 1D space. The mass fractions and temperature are permitted
to evolve freely and are tracked with each cell. At the LES level, the species equations
are not solved while the energy equation is. The LES-level filtered mass fractions
come from the filtering the mass fractions at the LEM level and the energy equation
is coupled through the filtered reaction rate. The LEM unfiltered mass fractions
evolve through:

∂Yk

∂t
= −u′

∂Yk

∂x
−

∂

∂x
(YkVk) +

∂

∂x

(
Dk

Wk

W

∂Xk

∂x

)
+ ω̇k (6.1)

The first term on the right hand side represents the change in mass fractions due
to turbulent velocity fluctuations and is handled via the stirring method; Vk is the
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(a) DNS simulation (b) LES-LEM simulation

Figure 6.1: Structure of a generic turbulent flame in a simulation.

diffusion velocity of species k. The temperature in each LEM cell is found by solving:

ρCp

[
∂T

∂t
+ u′

∂T

∂x

]
= −

N∑

k=1

hkω̇k +
∂

∂x

(
λ
∂T

∂x

)
− ρ

∂T

∂x

N∑

k=1

Cp,kYkVk (6.2)

where again, the term involving u′ is modeled with the stirring method. These two
equations assume a low-Mach number formulation holds, neglecting changes in tem-
perature due to compressibility effects.

The equation of state can be selected from any of the ones available in LESLIE,
including perfect and real gases. The pressure at the LEM level is considered constant
and is imposed from the LES cell. Equations 6.1 and 6.2 originate from the low-
Mach number approximation to the partial density and internal energy equations
respectively. The applicability of this approximation is discussed in the following
sections.

6.1.2 Compressible Mixing

The first validation test for LEM in compressible flow uses turbulent mixing of two
species, in this case both are air but are tagged separately to allow tracking, where
density changes are present due to large velocity fluctuations. The turbulence is
generated with a turbulent Mach number of 0.3. The turbulence is generated on a
2563 grid and then filtered onto a 963 grid for the fine-LES case and a 483 grid for the
coarse-LES and LES-LEM case. The MUSCL-central hybrid scheme is used [6]. The
two species are initialized with species 1 on the top half of the domain and species 2
on the bottom half.

To compare the different cases, the normalized product thickness is computed as:

ψ̃ =

∫∫∫
Ỹ1Ỹ2

0.25
dV (6.3)
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Figure 6.2: Product thickness and scalar dissipation trends with time for compressible
isotropically decaying turbulence at various resolutions with and without LEM

where a value of 1 indicates equal components of Ỹ1 and Ỹ2 while 0 indicates only
pure components. Additionally, the mean (spatial) scalar dissipation rate < χ̃ > is
computed as:

χ̃ = 2D

(
∂Ỹ1

∂xj

)2

(6.4)

The value of these two parameters with time is compared for the three cases to
determine the ability of LEM to capture the important trends in combustion under
compressible conditions.

Figure 6.2 shows these two quantities with time. The product thickness shows
that LEM vastly improves the coarse-LES solution relative to the fine-LES solution.
The improved mixing is due to the sub-grid stirring and the finer resolution of the
scalar gradients. In the late time range, LES-LEM over-mixes the species relative to
the fine solution. This is because at this stage, the sub-grid kinetic energy (which
is a measure of the unresolved velocity fluctuations) drops below 5% of the resolved
kinetic energy. This indicates that the unresolved turbulent fluctuations are minor;
in this regime, LEM is no longer a valid model due to the assumptions in the stirring
algorithm.

The scalar dissipation on the coarse-LES grid is greatly over-predicted and the
peak occurs at a later time than the fine-LES results. The addition of LEM to
the coarse simulation greatly improves the results, although LEM under-predicts the
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Figure 6.3: Simulation setup for the shock-flame problem

dissipation rate. Despite the under-prediction, the peak occurs at the correct time.
The better agreement of the scalar dissipation rate would result in better extinction
and re-ignition capturing on a coarse grid. The LES-LEM simulation is 80% faster
than the fine-LES simulation while giving quantitatively and qualitatively similar
results.

6.1.3 Shock-Flame-Turbulence Interactions

The dynamics of a turbulent flame impacted by a shock are very complex and pro-
hibitively expensive to resolve all of the required length scales. The application of
LEM to this type of flow is vital to improve the understanding of the dynamics. To
test this, a channel with periodic boundary conditions in the span-wise and transverse
directions and characteristic outflows on the ends (this changes once a shock is in-
troduced) has a stoichiometric methane flame initialized in the middle with isotropic
turbulence. The conditions are in the thin reaction zone regime. The flame is run for
a sufficient time to allow wrinkling to occur. Once wrinkled, a Mach 2 shock-wave is
introduced and passed through the flame front. This is shown in Fig. 6.3.

During the simulation the LES-level density and temperature and the filtered
LEM-level density and temperature are recorded at a point just inside the flame front.
As the shock hits the flame, the flame is pushed to the right causing the temperature
to drop at the traced point because it is no longer within the flame. Figure 6.4 shows
the density and temperature traces using the original formulation given in Section
6.1.1. Because the density at the LEM level is computed from the LES pressure and
LEM temperature, there is a jump in density as the shock wave passes through the
point. However, clearly there is no change in the LEM temperature as the shock
passes through the point. The density change after the shock is slightly lower at the
LEM level than LES because of the failure of LEM to see the temperature change.

This issue can be corrected by introducing a stronger temperature coupling be-
tween the LES and LEM levels. This is done by rescaling the LEM temperature in
each cell such that:

T̃LEM = T̃LES (6.5)

which preserves the fluctuations and flame structure in the LEM level while ensuring
the filtered temperatures match. This brings non-combustion related temperature
changes such as shocks and viscous heating into the LEM level. With this correction,
the LEM temperature is changed by the passage of the shock in Fig. 6.5.

45



Figure 6.4: Temperature and density traces for shock-flame simulation. Dashed lines
correspond to temperature on the right axis.
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Figure 6.5: Temperature and density traces for shock-flame simulation with LEM
temperature coupling. Dashed lines correspond to temperature on the right axis.
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6.1.4 Compressible Formulation

The compressible mixing test presented here and the supersonic mixing layer in [32]
indicate the LEM improves the solution of pure mixing problems even in the com-
pressible regime. The shock-flame test, however, shows LEM is not able to resolve
the flow field when shocks are present. A simple correction has been applied to make
it possible for LEM to be influence by the shock passage, but the resulting method
is still deficient.

The LEM equations in Eqns. 6.1 and 6.2 make use of the low-Mach number
approximation. This gives very accurate results when the primary form of energy, and
hence temperature, change in the flow is due to combustion. When there are other
strong heating sources such as shock waves, the low-Mach number approximation
fails. A new, proposed formulation for LEM would eliminate the low-Mach number
approximation.

The new formulation uses the compressible form of the species and energy equa-
tions:

∂ρk

∂t
+

∂

∂x
ρk (u′ + V c) =

∂

∂x

(
ρDk

Wk

W

∂Xk
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)
+ ω̇k (6.6a)

∂ρe

∂t
+

∂

∂x
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N∑
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hkYkVk

)
(6.6b)

where V c =
∑
DkWk/W∂Xk/∂x is the correction velocity used to ensure global mass

conservation. Note, all of these values are the unfiltered quantities. Recall that for
any Favre filtered variable:

f = f̃ + f ′′ (6.7)

Therefore, the LEM cells will track the fluctuating internal energy portion, e′′, and
will use the resolved filtered internal energy, ẽ, to solve for the unfiltered internal
energy. In this way, all of the various sources of energy change are accounted for
in a conservative fashion at the LEM level without imposing any constraints on the
evolution of the LEM cells.

6.1.5 Stronger Coupling with LES

The current formulation only couples the LES-LEM levels through the splicing of
mass across LES cell faces based on the resolved velocity field and through the filtered
reaction rates from the LEM level to the LES level. This coupling is a weak coupling
as many other variables are not coupled, such as temperature (or energy) or pressure.
A proposed strong coupling would allow these variables to be closely coupled.

The internal energy coupling from LES to LEM is inherent in the compressible for-
mulation given above. However, coupling from the LEM to LES level is still required.
Consider the Favre-averaged total energy equation used by the LES solver:

∂ρẼ

∂t
+

∂

∂xi

[
ρũjẼ + ũjP + qj − ũiτij +Hsgs

j + σsgs
j

]
= 0 (6.8)
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In this equation, Ẽ is the Favre-averaged total energy defined as:

Ẽ = ẽ+
1

2
ũkũk + ksgs (6.9)

which has components due to internal energy, resolved kinetic energy, and sub-grid
kinetic energy respectively. The internal energy is defined as:

ẽ =
N∑

k=1

[
Ỹkh̃k + esgs

k

]
−
P

ρ
(6.10)

and the pressure is defined as:

P = ρR̃T̃ + ρRuT
sgs (6.11)

It is these last two equations that provide a method for coupling the LEM energy to
the LES energy.

Specifically, the T sgs and esgs
k terms can be closed using information already avail-

able from LEM. The formal definitions of these terms are:

T sgs =
N∑

k=1

(ỸkT − ỸkT̃ )/MWk (6.12a)

esgs
k = ˜Ykek(T )− Ỹkek(T̃ ) (6.12b)

These closures require knowledge of the unfiltered mass fraction and internal energy
of each species and the unfiltered temperature. These values are readily available in
LEM. Proposed models for these terms are:

T sgs =
N∑

k=1

(CT ỸkT
LEM

− ỸkT̃ )/MWk (6.13a)

esgs
k = Ce

˜Ykek(T )
LEM

− Ỹkek(T̃ ) (6.13b)

where the coefficients CT and Ce need to be determined and account for the 1D
approximation inherent in LEM.

These sub-grid terms are typically neglected because they are assumed to be small
and have little influence on the flow. However, in the presence of large gradients of
species or temperature with very different internal energies, such as detonations, blast
waves, and real gas problems, these terms may no longer be trivial. Additionally,
when using LEM for sub-grid combustion, these values are already available anyway
and the only added cost for closing these terms is the cost of Favre-averaging the
products. The cost of closing these terms is trivial when LEM is already being used
and the closures provide a closer coupling of the two levels.

The final step for a strongly coupled LES-LEM model is to handle changes in
pressure at the LES level. Currently, as LEM cells move between LES cells, there
is no consideration for the properties of the new LES cell. However, if the pressure
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in the new LES cell is different from the original one, the LEM cell should expand
or contract accordingly to adjust to the pressure at the new location. This pressure
adjustment will alter the volume of the LEM cell as well as the internal energy and
species densities.

Evaluations of the compressible formulation and the strongly coupled approach
are currently underway.
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CHAPTER VII

CONCLUSIONS

A static mesh refinement method has been systematically developed and validated
for various flow features that are of critical importance for turbulent combustion and
fluid-structure interactions. Solution-adaptive techniques require a clear understand-
ing of the behavior of various flows crossing the refinement boundary because it is
impractical to refine for all flow features, particularly turbulence [25].

Turbulence moving from a fine region of the grid to a coarse region of the grid
requires no special treatment and all scales are correctly resolved on both sides of the
refinement boundary. This is ideal for most cases because the region of interest will
be within the refined region of the grid. However, turbulence moving from coarse to
fine grids requires special treatment. Such a situation may be unavoidable if there are
multiple regions of interest, and hence refinement, separated in space or if turbulence
must be injected from the inflow and convected downstream to the region of interest.
Alternative interpolation schemes are currently being investigated to minimize the
influence of the refinement on the large scales of the flow when moving from a coarse
to a fine grid. The small scales can be left untreated if sufficient padding is provided
on the fine grid prior to the feature of interest. This padding region allows the
smaller scales to spin-up through the turbulent cascade. Current investigations on
the application of scale-similarity arguments are underway to reduce or eliminate the
padding region needed.

The convection of coherent structures across the refinement boundary yields mixed
results. Again, as with the turbulence, going from fine to coarse poses little problem
and the results on the coarse grid is significantly improved compared to the all-coarse
grid solution. The vortex moving from the coarse grid to the fine grid has widely varied
results depending on the interpolation method and parameters chosen. Care must
be taken if coherent structures will need to be accurately tracked through multiple
refinement boundaries. Both the two dimensional vortex and the three dimensional
vortex ring are well represented through multiple coarsenings.

The coupling of the static refinement method with the Lagrangian solver in
LESLIE allows the tracking of solid, liquid, and tracer particles through the flow,
including reactions and evaporation. Because the particle algorithm only requires
knowledge of the nearest neighbors across the boundary due to the Lagrangian na-
ture of the solver, the tracking is no less precise than on a standard mesh. This also
implies the linear eddy model (LEM), another Lagrangian method, will also transfer
to the discontinuous grids. Investigations are on-going as to the best way to couple
LEM across refinements.

Finally, the static mesh refinement approach allows multiple and arbitrary refine-
ments and coarsenings. This is essential for complex geometries where maintaining
integer refinement ratios is not possible. The flow through a generic swirler with
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an over-all coarsening of 27:1 yields tremendous cost savings while maintaining the
large-scale turbulent structures and acoustic waves in all but the coarsest region. The
loss of structures in that region is due to the coarseness of the grid. The improvement
in CPU time is nearly ideal when properly load balanced. The cost of reconstructing
the values prior to communication only results in a loss of 3-4% from the ideal cost
reduction.

Parallel to the studies done with the static mesh method, an adaptive mesh refine-
ment approach was developed and validated. The approach uses a level-set function
to track embedded bodies with the surface represented using cut-cells. The bodies
themselves may have their motion prescribed or solved using a mesh-free material
solver. The results of the static mesh refinement studies are currently being imple-
mented in the adaptive solver. Additionally, work is currently being done to improve
the scalability and parallel performance of the adaptive solver.
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